SET-XP® High-Strength Epoxy Adhesive

Cracked

Concrete

SET-XP® epoxy anchoring adhesive is a high-strength formula for anchoring and doweling in cracked and uncracked concrete and masonry applications. It is a two-part system with the resin and hardener being simultaneously dispensed and mixed through the mixing nozzle. When properly mixed, adhesive will be a uniform teal color for easy post-installation identification.

Features

- 1:1 two-component, high-solids, epoxy-based anchoring adhesive formula
- Passed the demanding ICC-ES AC308 adverse-condition tests pertaining to elevated temperatures and long-term sustained
- Code listed under the IBC/IRC for cracked and uncracked concrete per ICC-ES ESR-2508
- · Code listed under the IBC/IRC for masonry per IAPMO UES ER-265
- · Suitable for use under static and seismic loading conditions in cracked and uncracked concrete and masonry
- Cure times: 24 hours at 70°F, 72 hours at 50°F
- Easy hole-cleaning no power-brushing required
- Suitable for use in dry or water-saturated concrete
- For best results, store between 45°F and 90°F
- · Available in 8.5 oz., 22 oz. and 56 oz. cartridges for application versatility
- · Manufactured in the USA using global materials

Applications

- Threaded rod anchoring and rebar doweling into concrete and masonry
- · Suitable for horizontal, vertical and overhead applications
- Multiple DOT listings refer to www.strongtie.com/DOT for current approvals

Codes: ICC-ES ESR-2508 (concrete); IAPMO UES ER-265 (masonry); City of L.A. RR25744 (concrete), RR25965 (masonry); Florida FL-17449.2 (concrete), FL-16230.3 (masonry); AASHTO M-235 and ASTM C881 (Type I and IV, Grade 3, Class C); NSF/ANSI Standard 61 (216 in.2/1,000 gal.)

Chemical Resistance

See pages 320-321.

Installation and Application Instructions

(See also pages 124-127.)

- Surfaces to receive epoxy must be clean.
- Base material temperature must be 50°F or above at the time of installation. For best results, material should be between 70°F and 80°F at time of application.
- To warm cold material, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water to facilitate warming.
- Mixed material in nozzle can harden in 30 minutes at temperatures of 70°F and above.

SET-XP® Adhesive

Design Example

See page 328.

Suggested Specifications

See www.strongtie.com for more information.

SET-XP® High-Strength Epoxy Adhesive

Test Criteria

Anchors installed with SET-XP® adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Post-Installed Adhesive Anchors in Masonry Elements (AC58) and Adhesive Anchors in Concrete Elements (AC308).

Property	Test Method	Result*
Consistency	ASTM C881	Passed, non-sag
Glass transition temperature	ASTM E1356	155°F
Bond strength (moist cure)	ASTM C882	3,742 psi at 2 days
Water absorption	ASTM D570	0.10%
Compressive yield strength	ASTM D695	14,830 psi
Compressive modulus	ASTM D695	644,000 psi
Shore D Durometer	ASTM D2240	84
Gel time	ASTM C881	49 minutes
Volatile Organic Compound (VOC)	_	3 g/L

^{*}Material and curing conditions: 73 ± 2°F, unless otherwise noted.

SET-XP® Cartridge System

Model No.	Capacity (ounces)	Cartridge Type	Carton Quantity	Dispensing Tool(s)	Mixing Nozzle
SET-XP10 ⁴	8.5	Single	12	CDT10S	
SET-XP22-N⁵	22	Side-by-Side	10	EDT22S, EDTA22P, EDTA22CKT	EMN22i
SET-XP56	56	Side-by-Side 6		EDTA56P	

- 1. Cartridge estimation guidelines are available at www.strongtie.com/apps.
- Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available on pages 128 through 135, or at www.strongtie.com.
- 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair SET-XP adhesive performance.
- 4. Two EMN22i mixing nozzles and two nozzle extensions are supplied with each cartridge.
- 5. One EMN22i mixing nozzle and one nozzle extension are provided with each cartridge.

Cure Schedule

	laterial erature	Cure Time (hrs.)
°F	°C	(1115.)
50	10	72
60	16	48
70	21	24
90	32	24
110	43	24

For water-saturated concrete, the cure times must be doubled.

SET-XP® Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

Characteristic		Symbol	Units	Nominal Anchor Diameter (in.) / Rebar Size								
Glidiacteristic			UIIILS	% / #3	1/2 / #4	5% / #5	3/4 / #6	7/8 / # 7	1 / #8	11/4 / #10		
			Instal	lation Inform	ation							
Drill Bit Diameter		d _{hole}	in.	1/2	5/8	3/4	7/8	1	11/8	1%		
Maximum Tightening Torque		T _{inst}	ftlb.	10	20	30	45	60	80	125		
Parmitted Embadment Depth Pance	Minimum	h _{ef}	in.	23/8	2¾	31/8	31/2	3¾	4	5		
Permitted Embedment Depth Range	Maximum	h _{ef}	in.	71/2	10	121/2	15	171/2	20	25		
Minimum Concrete Thickness	S	h _{min}	in.				$h_{ef} + 5d_0$					
Critical Edge Distance ²		Cac	in.				See footnote 2	2				
Minimum Edge Distance	C _{min}	in.			1	3/4			23/4			
Minimum Anchor Spacing		S _{min}	in.			;	3			6		

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.

 $[h/h_{ef}] \leq 2.4$

 $\tau_{\textit{k,uncr}} = \text{the characteristic bond strength in uncracked concrete, given in the tables that follow} \leq k_{\textit{uncr}} \left(\left(h_{\textit{ef}} \times f^{1}_{\textit{c}} \right)^{0.5} / \left(/ \textit{f} \times d_{\textit{a}} \right) \right)$

h =the member thickness (inches)

hef = the embedment depth (inches)

^{2.} $c_{ac} = h_{ef} (\tau_{k,uncr}/1160)^{0.4} \times [3.1 - 0.7(h/_{hef})]$, where:

IBC

Adhesive Anchors

SET-XP® Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

JE 174 10	nsion Strength Design Data for Threa	adou i lou	11111011	TICK! V	voigilie		Nominal A	nchor Die	motor (in)		
	Characteristic		Symbol	Units	3/8	1/2	5%	3/4	7/8	1	11/4
		Steel Stre	enath in T	ension	/0	/2	/8	/4	/6	•	1 /4
	Minimum Tensile Stress Area	01001.011	A_{se}	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel — ASTM F1554, Grade	e 36	00		4,525	8,235	13,110	19,370	26,795	35,150	56,200
	Tension Resistance of Steel — ASTM A193, Grade E	B7			9,750	17,750	28,250	41,750	57,750	75,750	121,12
Threaded Rod	Tension Resistance of Steel — Type 410 Stainless (A Grade B6)	(ASTM A193,	N_{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590
	Tension Resistance of Steel — Type 304 and 316 S (ASTM A193, Grade B8 & B8M)	Stainless			4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor — Steel Failure		φ	_				0.75^{7}			
	Concrete Breako	out Strength in	Tension (2,500 p	si ≤ f' _C ≤	8,000 psi) ¹	2				
Effectiveness Fa	actor — Uncracked Concrete		<i>k</i> _{uncr}	_				24			
Effectiveness Fa	actor — Cracked Concrete		<i>k</i> _{cr}	_				17			
Strength Reduct	tion Factor — Breakout Failure		φ	_	0.65 ⁹						
	Bond Strei	ength in Tension	n (2,500	osi ≤ f'c	≤ 8,000 μ	osi) ¹²					
l la ava al ca d	Characteristic Bond Strength ^{5,13}		$ au_{k,uncr}$	psi	770	1,150	1,060	970	885	790	620
Uncracked Concrete 2,3,4	Permitted Embedment Depth Range	Minimum Maximum	h _{ef}	in.	23/8 71/2	2¾ 10	31/8 121/2	3½ 15	3¾ 17½	4 20	5 25
Ougaliad	Characteristic Bond Strength ^{5,10,11,13}		$ au_{k,cr}$	psi	595	510	435	385	355	345	345
Cracked Concrete 2,3,4	Permitted Embedment Depth Range	Minimum Maximum	h _{ef}	in.	3 7½	4 10	5 12½	6 15	7 17½	8 20	10 25
	Bond Strength in Tension — Bo	ond Strength R	eduction	Factors	for Cont	inuous Spo	ecial Inspe	ction			
Strength Reduct	tion Factor — Dry Concrete		φ _{dry, ci}	_				0.658			
Strength Reduct	tion Factor — Water-saturated Concrete — h _{ef} ≤ 12d _ε	a	φ _{sat,ci}	_	0.	55 ⁸			0.458		
Additional Facto	or for Water-saturated Concrete — h _{ef} ≤ 12d _a		K _{sat,ci} ⁶	_	N	/A		1		0.	84
Strength Reduct	tion Factor — Water-saturated Concrete — h _{ef} > 12d	la	φ _{sat,ci}	_				0.458			
	or for Water-saturated Concrete — h _{ef} > 12d _a		k _{sat,ci} 6	_				0.57			
	Bond Strength in Tension — E	Bond Strength	Reductio	n Facto	rs for Per	iodic Spec	ial Inspec	tion			
Strength Reduct	tion Factor — Dry Concrete		$\phi_{dry,pi}$	_				0.558			
Strength Reduct	tion Factor — Water-saturated Concrete — $h_{ef} \le 12d_{\epsilon}$	a	φ _{sat,pi}	_				0.458			
Additional Facto		K _{sat,pi} 6	_		1		0.93		0.	71	
Strength Reduct	tion Factor — Water-saturated Concrete — h _{ef} > 12d _e	la	φ _{sat,pi}	_	0.458						
Additional Facto	or for Water-saturated Concrete — h _{ef} > 12d _a		K _{sat,pi} 6					0.48			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.
- $2. \ \ \text{Temperature Range: Maximum short-term temperature of } 150^{\circ}\text{F. Maximum long-term temperature of } 110^{\circ}\text{F. } \\$
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. For anchors that only resist wind or seismic loads, bond strengths may be increased b 72%.
- 6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .
- 7. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 8. The value of *φ* applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of *φ*.
- 9. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.
- 10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for $\frac{7}{6}$ anchors must be multiplied by $\alpha_{N,selis} = 0.80$.
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by $\alpha_{N,sels} = 0.92$.
- 12. The values of f_C' used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f_C' used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.
- 13. For applications where maximum short-term temperature is 110°F (43°C) and the maximum long-term temperature is 75°F (24°C), bond strengths may be increased 93%. No additional increase is permitted for anchors that only resist wind or seismic loads.

^{*} See page 12 for an explanation of the load table icons.

SET-XP® Tension Strength Design Data for Rebar in Normal-Weight Concrete¹

Oleanestanistia		0	112				Rebar Size	;			
Characteristic		Symbol	Units	#3	#4	#5	#6	#7	#8	#10	
	Ste	eel Strength in	Tension								
Minimum Tensile Stress Area		A_{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23	
Tension Resistance of Steel — R (ASTM A615 Grade 60)	ebar	N_{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700	
Strength Reduction Factor – Stee	l Failure	ϕ	_	0.657							
Concrete Br	eakout Strer	ngth in Tension	ı (2,500 ps	$i \le f'_{C} \le 8$	000 psi) ¹⁰						
acked Concrete		<i>k</i> _{uncr}	_				24				
xed Concrete		<i>k_{cr}</i>	_				17				
Breakout Failure		φ	_				0.65 ⁹				
Bond	Strength in	Tension (2,50	$0 \text{ psi} \leq f_C^{\circ} \leq$	8,000 ps	i) ¹⁰						
Characteristic Bond Strength ^{5,11}		$\tau_{k,uncr}$	psi	895	870	845	820	795	770	720	
Permitted Embedment Depth	Minimum	h	in	2%	23/4	31/8	31/2	3¾	4	5	
Range	Maximum	11 _{ef}	111.	71/2	10	121/2	15	171/2	20	25	
Characteristic Bond Strength ^{5,11}		$\tau_{k,cr}$	psi	365	735	660	590	515	440	275	
Permitted Embedment Depth	Minimum	h	in	3	4	5	6	7	8	10	
Range	Maximum	Hef	111.	71/2	10	12½	15	171/2	20	25	
Bond Strength in Tension -	— Bond Stre	ength Reduction	n Factors	for Contin	uous Spec	cial Inspec	tion				
Ory Concrete		φ _{dry,ci}	_		0.65 ⁸						
Vater-saturated Concrete - h _{ef} ≤ 12	2da	φ _{sat,ci}	_	0.	55 ⁸			0.458			
turated Concrete - h _{ef} ≤ 12d _a		K _{sat,ci} 6	_	N	/A		1		0.	84	
Vater-saturated Concrete - h _{ef} > 12	2d _a	φsat.ci	_				0.458				
turated Concrete - h _{ef} > 12d _a		K _{sat,ci} 6	_				0.57				
Bond Strength in Tension	— Bond St	rength Reduct	ion Factor	s for Perio	dic Specia	al Inspecti	on				
Ory Concrete		φ _{drv.pi}	_				0.558				
Strength Reduction Factor – Water-saturated Concrete - h _{ef} ≤ 12d _a					0.458						
Additional Factor for Water-saturated Concrete - h _{ef} ≤ 12d _a					1		0.93		0.	71	
Strength Reduction Factor – Water-saturated Concrete - h _{ef} > 12d _a							0.458				
turated Concrete - h _{ef} > 12d _a			_				0.48				
	Tension Resistance of Steel — R (ASTM A615 Grade 60) Strength Reduction Factor — Steet Concrete Broked Concrete ed Concrete Breakout Failure Bond Characteristic Bond Strength ^{5,11} Permitted Embedment Depth Range Characteristic Bond Strength ^{5,11} Permitted Embedment Depth Range Bond Strength in Tension - Dry Concrete Vater-saturated Concrete - $h_{ef} \le 12d_a$ Vater-saturated Concrete - $h_{ef} > 12d_a$ Bond Strength in Tension The Strength in Tension - Dry Concrete Vater-saturated Concrete - $h_{ef} > 12d_a$ Bond Strength in Tension The Strength in Tens	Minimum Tensile Stress Area Tension Resistance of Steel — Rebar (ASTM A615 Grade 60) Strength Reduction Factor — Steel Failure Concrete Breakout Strench Strench Strench Strench Strench Strength in Characteristic Bond Strength 5,11 Permitted Embedment Depth Range $\frac{\text{Minimum}}{\text{Maximum}}$ Characteristic Bond Strength 5,11 Permitted Embedment Depth Range $\frac{\text{Minimum}}{\text{Maximum}}$ Bond Strength in Tension — Bond Strench Str	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Steel Strength in Tension Minimum Tensile Stress Area A_{Se} in² 0.11 0.2 Tension Resistance of Steel — Rebar (ASTM A615 Grade 60) N _{Sa} lb. 9,900 18,000 Strength Reduction Factor — Steel Failure ϕ — Concrete Breakout Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)¹¹⁰ Cked Concrete k_{uncr} — Breakout Failure ϕ — Bond Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)¹⁰ Characteristic Bond Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)¹⁰ Characteristic Bond Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)¹⁰ Characteristic Bond Strength in Tension (2,500 psi ≤ f'c ≤ 8,000 psi)¹⁰ Permitted Embedment Depth Maximum Maximum h _{ef} in. 2³% 2³¼ Permitted Embedment Depth Maximum Maximum h _{ef} in. 2³% 2³¼ Permitted Embedment Depth Maximum Maximum h _{ef} in. 3 4 Permitted Embedment Depth Maximum Maximum h _{ef} in. 7½ 10 Bond Strength in Tension — Bond Strength Reduction Factors for C	Characteristic Symbol Units #3 #4 #5 Steel Strength in Tension Minimum Tensile Stress Area A _{SS} in² 0.11 0.2 0.31 Tension Resistance of Steel — Rebar (ASTM A615 Grade 60) N _{Sa} lb. 9,900 18,000 27,900 Strength Reduction Factor – Steel Failure Concrete k_{uncr} — Concrete k_{uncr} — Breakout Failure ϕ — Breakout Strength in Tension Tension (2,500 psi ≤ f'c ≤ 8,000 psi)** </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td> Symbol Symbol Symbol Steel Strength in Tension Steel Strength in Tension Resistance of Steel — Rebar (ASTM A615 Grade 60) Strength Reduction Factor – Steel Failure φ −</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Symbol Symbol Symbol Steel Strength in Tension Steel Strength in Tension Resistance of Steel — Rebar (ASTM A615 Grade 60) Strength Reduction Factor – Steel Failure φ −	

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 150°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. For anchors that only resist wind or seismic loads, bond strengths may be increased b 72%.
- 6. In water-saturated concrete, multiply $au_{\textit{k,uncr}}$ and $au_{\textit{k,cr}}$ by $extit{K}_{\textit{sat}}$.
- The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 8. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 9. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4 (c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 10. The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'_c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.
- 11. For applications where maximum short-term temperature is 110°F (43°C) and the maximum long-term temperature is 75°F (24°C), bond strengths may be increased 93%. No additional increase is permitted for anchors that only resist wind or seismic loads.

^{*} See page 12 for an explanation of the load table icons.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

SET-XP® Design Information — Concrete

IBC

SET-XP® Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

	Characteristic	Cumbal	Unito			Nominal A	Anchor Dia	meter (in.)			
	Characteristic	Symbol	UIIILS	3/8	1/2	5/8	3/4	7/8	1	11/4	
	Stee	l Strengt	h in Shea	ır							
	Minimum Shear Stress Area	A _{se}	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720	
	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675	
	Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)	V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955	7
	Shear Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140	2
	Reduction for Seismic Shear — ASTM F1554, Grade 36			0.87	0.78		0.	68		0.65	9
	Reduction for Seismic Shear — ASTM A193, Grade B7			0.87	0.78		0.	68		0.65	<
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6)	$lpha_{V\!,seis}{}^{5}$	_	0.69	0.82		0.75		0.83	0.72	
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B8 & B8M)			0.69	0.82		0.75		0.83	0.72	
	Strength Reduction Factor — Steel Failure	φ	_				0.65^{2}				
	Concrete B	reakout S	trength	in Shear							E
	Outside Diameter of Anchor	do	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
	Load Bearing Length of Anchor in Shear	ℓ_e	in.				h _{ef}				1
	Strength Reduction Factor — Breakout Failure	φ	_				0.70^{3}				1
Concrete Pryout Strength in Shear											
	Coefficient for Pryout Strength	k _{cp}	_		1.	0 for h_{ef} < 1	2.50"; 2.0	for $h_{ef} \ge 2.5$	50"		
	Strength Reduction Factor — Pryout Failure	φ					0.704				

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.
- 2. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 3. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition A are met, refer to Section D.4.3 to determine
- the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 5. The values of $V_{\rm SS}$ are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, $V_{\rm SS}$ must be multiplied by $\alpha_{V,\rm Seis}$ for the corresponding anchor steel type.

SET-XP® Shear Strength Design Data for Rebar in Normal-Weight Concrete¹

	Characteristic		Units				Rebar Size	;		
	Characteristic	Symbol	UIIILS	#3	#4	#5	#6	#7	#8	#10
Steel Strength in Shear										
	Minimum Shear Stress Area	A _{se}	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Rebar	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V _{sa}	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420
neuai	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)	$lpha_{V\!,seis}$ 5	_	0.85	0.88	0.	84	0.	77	0.59
	Strength Reduction Factor — Steel Failure	φ	_				0.602			
	Concr	ete Breakou	t Strength	in Shear						
	Outside Diameter of Anchor	do	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
	Load-Bearing Length of Anchor in Shear	ℓ_e	in.		h _{ef}					
	Strength Reduction Factor — Breakout Failure	φ	_				0.703			
	Conc	rete Pryout	Strength in	Shear						
	Coefficient for Pryout Strength	<i>k_{cp}</i>	_		1.	of for $h_{ef} < 2$	2.50"; 2.0 f	for $h_{ef} \ge 2.5$	50"	
	Strength Reduction Factor — Pryout Failure	φ	_				0.704			

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-11.
- 2. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 3. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition A are met, refer to Section
- D.4.3 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 5. The values of $V_{\rm sa}$ are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, $V_{\rm sa}$ must be multiplied by $\alpha_{V_{\rm S}{\rm eis}}$.

SET-XP® Development Length for Rebar Dowels in Normal-Weight Concrete^{1,2,3,4,5,6}

IRC
IDU

			Deve	elopment Length, in. ((mm)	
Rebar Size	Top Cover in. (mm)	f' _c = 2,500 psi (17.2 MPa) Concrete	f' _c = 3,000 psi (20.7 MPa) Concrete	f' _c = 4,000 psi (27.6 MPa) Concrete	f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete
#3 (9.5)	1½ (38)	12 (305)				
#4 (12.7)	1½ (38)	15 (381)	14 (356)	12 (305)	12 (305)	12 (305)
#5 (15.9)	1½ (38)	18 (457)	17 (432)	15 (381)	12 (305)	12 (305)
#6 (19.1)	1½ (38)	22 (559)	20 (508)	18 (457)	14 (356)	13 (330)
#7 (22.2)	3 (76)	32 (813)	29 (737)	25 (635)	21 (533)	18 (457)
#8 (25.4)	3 (76)	36 (914)	33 (838)	29 (737)	24 (610)	21 (533)
#9 (28.7)	3 (76)	41 (1041)	38 (965)	33 (838)	27 (686)	23 (584)
#10 (32.3)	3 (76)	46 (1168)	42 (1067)	37 (940)	30 (762)	26 (660)
#11 (35.8)	3 (76)	51 (1295)	47 (1194)	41 (1041)	33 (838)	29 (737)

^{1.} Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B.

^{2.} Rebar is assumed to be ASTM A615 Grade 60 or A706 ($f_y = 60,000$ psi). For rebar with a higher yield strength, multiply tabulated values by $f_y / 60,000$ psi.

^{3.} Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

^{4.} Tabulated values assume bottom cover of less than 12 inches cast below rebars (Ψ_t = 1.0).

^{5.} Uncoated rebar must be used.

^{6.} The value of K_{tr} is assumed to be 0. Refer to ACI 318 Section 12.2.3.

SET-XP® Tension Design Strength for Threaded Rod Anchors in Normal-Weight Concrete (f'_c = 2,500 psi)

IBC	1		*
l J	252	[[[]]	37500

Nominal Minimum Dimensions Minimum Dimensions Tension Design Strength Based on Concrete or Bond													
Rod Dia.	Embed.	for Und	cracked	for Cr	acked			= c _{ac} on all s	sides	Ĭ	and Cac on	= 1¾" on one three sides	
(in.)	Depth (in.)		n.)		n.)	SDC			C-F ^{7,8}	SDC	A-B ⁶	SDC	
	(,	ha	Cac	ha	c _{ac}	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
	2%	4 ½ 5¾	33/ ₄ 35/ ₈	_	_	1,185	_	890	_	675 800	_	505 600	_
	3	47/8 71/4	5 4½	47/8	31/4	1,500	1,150	1,125	865	635 880	775	475 660	585
3/8	41/2	63/8 107/8	8 1/8 6 3/4	6%	31/4	2,250	1,725	1,685	1,295	590 880 570	1,165	445 660	875
	6	7 1/8 1 4 1/2	111/8 9	77/8	43/8	2,995	2,300	2,250	1,725	880	1,555	430 660	1,165
	71/2	9% 18	141/4 111/4	9%	5%	3,745	2,875	2,810	2,160	560 880	1,945	420 660	1,455
	23/4	51/4 65/8	51/8 51/8	_	_	2,730	_	2,050	_	1,470 1,470	_	1,105 1,105	_
	4	6½ 9%	77/8 6	6½	51/8	3,975	1,755	2,980	1,315	1,400 1,935	945	1,050 1,450	710
1/2	6	8½ 14½	12% 9	81/2	51/8	5,960	2,635	4,470	1,975	1,300 1,935 1,260	1,420	975 1,450	1,065
	8	10½ 19¼	17½ 12 22¼	10½	51/4	7,950	3,510	5,960	2,635	1,260 1,935 1,235	1,890	945	1,420
	10	12½	15	12½	6%	9,935	4,390	7,450	3,290	1.935	2,365	925 1,450	1,775
	31/8	61/4 71/2	61/4 61/4 91/2	_		3,580		2,685	_	1,805 1,805	_	1,355 1,355	
5/8	5	8½ 12	71/2	81/8	61/4	5,730	2,335	4,295	1,750	1,875 2,590	1,175	1,405	885
78	71/2	10% 18	15% 11¼	10%	61/4	8,595	3,500	6,445	2,625	1,745 2,590	1,765	1,310 1,945	1,325
	12½	15% 30	26 ⁷ / ₈ 18 ³ / ₄	15%	75/8	14,320	5,830	10,740	4,375	1,655 2,590	2,945	1,240 1,945	2,210
	31/2	7 ½ 8 ½	7 1/8 7 1/8	_	_	4,385	_	3,290	_	2 120	_	1,590 1,590 1,750	_
3/4	6	93/4	9	9¾	71/8	7,520	3,000	5,640	2,250	2,120 2,335 3,230	1,450	2.420	1,090
74	9	12¾ 21⅓	17¾ 13½	12¾	71/8	11,280	4,500	8,460	3,375	2,175 3.230	2,180	1,630 2,420	1,635
	15	18¾ 36	31 1/8 22 1/2	18¾	9	18,795	7,505	14,100	5,625	2,060 3,230	3,630	1,545 2,420	2,720
	3¾	8 1/8 9	77/8 77/8	_	_	5,020	_	3,010	_	2,355 2,355	_	1,410 1,410	_
7/8	7	11% 16%	12% 10½	11%	77/8	9,365	3,745	5,620	2,250	2,795 3,865	1,755	1,680 2,320	1,055
76	10½	147/8 251/4	197/8 153/4	147/8	71/8	14,050	5,620	8,430	3,370	2,605 3,865	2,635	1,560 2,320	1,580
	17½	21% 42	35 261/4 81/2	217/8	10	23,415	9,365	14,050	5,620	2,465 3,865	4,390	1,480 2,320	2,635
	4	9 95%	81/2	_	_	5,455	_	3,765	_	2,505 2,505	_	1,730 1,730	_
1	8	13 19¼ 17	13½ 12 21¾	13	81/2	10,905	4,755	7,525	3,280	3,155 4,360	2,185	2,175 3,010	1,510
'	12	287/8	18	17	81/2	16,360	7,135	11,290	4,920	2,935 4,360 2,785	3,280	2,025 3,010	2,265
	20	25 48	381/4	25	121/4	27,265	11,890	18,815	8,205	2,785 4,360	5,465	1,920 3,010	3,770
	5	11½ 12	9½ 9½	_	_	6,705	_	5,030	_	_	_	_	_
11/4	10	161/ ₄ 24	15% 15	161⁄4	9½	13,415	7,430	10,060	5,570	_	_	_	_
1 74	15	21 ½ 36	24 ³ / ₄ 22 ¹ / ₂	21 1/4	111/8	20,120	11,145	15,090	8,360	_	_	_	
	25	31 ½ 60	43% 37½	31 1/4	15%	33,530	18,575	25,150	13,930	_	_	_	_

Threaded Rod		Tension Design Strength of Threaded Rod Steel (lb)												
Dia. (in.)	ASTM F1554, GR 36	ASTM F1554, GR 55	ASTM F1554, GR 105	ASTM A193, B6	ASTM A193, B7	ASTM A193, B8/B8M								
3/8	3,370	4,360	7,270	6,395	7,270	3,310								
1/2	6,175	7,990	13,315	11,715	13,315	6,070								
5/8	9,835	12,715	21,190	18,645	21,190	9,660								
3/4	14,530	18,790	31,315	27,555	31,315	14,280								
7/8	20,095	25,990	43,315	38,115	43,315	19,750								
1	26,365	34,090	56,815	49,995	56,815	25,905								
11/4	42,150	54,505	90,845	79,945	90,845	41,425								

- Tension design strength must be the lesser of the concrete, bond or threaded rod steel design strength.
- 2. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F.
- 3. Tabulated values are for a single anchor with no influence of another anchor.
- 4. Interpolation between embedment depths is not permitted.
- 5. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.

- The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level
- also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

 7. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. Design strengths in Bold indicate that the anchor ductility requirements of D.3.3.4.3 (a)1 to 3 are satisfied when using ASTM F1554 Grade 36 threaded rod. Any other ductility requirements must be satisfied.

^{*} See page 12 for an explanation of the load table icons.

Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

SET-XP® Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete $(f'_{c} = 2,500 \text{ psi})$ — Static Load

IRC	
IDU	

Adhesive Anchors

c – 2,000	Nominal Embed.		mensions for		imensions for			sed on Concrete o	or Bond (lb.)
Rod Dia. (in.)	Depth (in.)		acked n.)		cked n.)		nces = c _{ac} sides	Edge Distances side and Cac (s = 1%" on one on three sides
	(,	h _a	C _{ac}	ha	Cac	Uncracked	Cracked	Uncracked	Cracked
	23/8	4 1/4 5 3/4	3¾ 3½	_	_	845	_	480 570	_
	3	47/8 71/4	5 4½	47/8	31/4	1,070	820	455 630	555
3/8	41/2	6% 10%	8 1/8 6 3/4	6%	31/4	1,605	1,230	420 630	830
	6	7% 14½	11 1/8 9	77/8	43/8	2,140	1,645	405 630	1,110
	71/2	9% 18	14¼ 11¼	9%	5%	2,675	2,055	400 630	1,390
	23/4	51/ ₄ 65/ ₈	51/8 51/8	_	_	1,950	_	1,050 1,050	_
	4	6½ 9%	77/8 6	61/2	51/8	2,840	1,255	1,000 1,380	675
1/2	6	8½ 14½	12% 9	81/2	51/8	4,255	1,880	930	1,015
	8	10½ 19¼	17½ 12	10½	51/4	5,680	2,505	1,380 900 1,380	1,350
	10	12½	22½ 15	12½	63/8	7,095	3,135	1,380 880 1,380	1,690
	31/8	6½ 7½	6½ 6¼ 6¼	_	_	2,555	_	1,290 1,290	_
	5	81/8 12	9½ 7½	81/8	61/4	4,095	1,670	1,340 1,850	840
5/8	71/2	10% 18	15% 11¼	10%	61/4	6,140	2,500	1,245 1,850	1,260
	12½	15% 30	267/8 183/4	15%	75/8	10,230	4,165	1,180 1,850	2,105
	31/2	7½ 8½	7 ½ 7 ½ 7 ½	_	_	3,130	_	1,515 1,515	_
0.4	6	9¾ 14½	11	9¾	71/8	5,370	2,145	1,670 2,305	1,035
3/4	9	12¾ 21¾	17¾ 13½	12¾	71/8	8,055	3,215	1,555 2,305	1,555
	15	18¾ 36	31 ½ 22½	18¾	9	13,425	5,360	1,470 2,305	2,595
	3¾	8 1/8 9	77/8 77/8	_	_	3,585	_	1,680 1.680	_
7/	7	11% 16%	12% 10½	11%	77/8	6,690	2,675	1,995 2,760	1,255
7/8	101/2	147/8 251/4	197/8 153/4	14%	77/8	10,035	4,015	1,860 2,760	1,880
	171/2	217/8 42	35 261/4	21%	10	16,725	6,690	1,760 2,760	3,135
	4	9 95%	8½ 8½	_	_	3,895	_	1,790 1,790	_
4	8	13 19¼	13½ 12	13	81/2	7,790	3,395	2.255	1,560
1	12	17	21¾ 18	17	81/2	11,685	5,095	3,115 2,095 3,115	2,345
	20	28 1/8 25 48	38 ½ 30	25	121/4	19,475	8,495	1,990 3,115	3,905
	5	11½ 12	9½ 9½	_	_	4,790	_	_	_
41/	10	161/4 24	15% 15	161⁄4	91/2	9,580	5,305	_	_
11⁄4	15	21 ½ 36	24¾ 22½	211/4	111/8	14,370	7,960	_	_
	25	31½ 60	43% 37½	311/4	15%	23,950	13,270	_	_

Threaded		Allowable Tension Load of Threaded Rod Steel (lb.)										
Rod Dia. (in.)	ASTM F1554, GR 36	ASTM F1554, GR 55	ASTM F1554, GR 105	ASTM A193, B6	ASTM A193, B7	ASTM A193, B8/B8M						
3/8	2,405	3,115	5,195	4,570	5,195	2,365						
1/2	4,410	5,705	9,510	8,370	9,510	4,335						
5/8	7,025	9,080	15,135	13,320	15,135	6,900						
3/4	10,380	13,420	22,370	19,680	22,370	10,200						
7/8	14,355	18,565	30,940	27,225	30,940	14,105						
1	18,830	24,350	40,580	35,710	40,580	18,505						
1 1/4	30,105	38,930	64,890	57,105	64,890	29,590						

^{1.} Allowable tension load must be the lesser of the concrete, bond or threaded rod steel load.

^{2.} Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of

^{*} See page 12 for an explanation of the load table icons.

^{110°}F. Tension design strengths are converted to allowable tension loads using a conversion factor of a = 1.4. The conversion factor a is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

^{3.} Tabulated values are for a single anchor with no influence of another anchor.

^{4.} Interpolation between embedment depths is not permitted.

SET-XP $^{\odot}$ Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (f' $_{\rm C}$ = 2,500 psi) — Wind Load

$\overline{}$	 $\overline{}$	•
20		
ВU	ii	
	200 200	

$(I_C - 2,300)$	p3i) vv ii k	LUau				Allanoshia T			an Daniel (lla)	
Rod Dia. (in.)	Nominal Embed. Depth		mensions for ked (in.)	Minimum Di Crack	mensions for ed (in.)		tances =	ased on Concrete or Bond (lb.) Edge Distances = 1¾" on one side and c _{ac} on three sides		
	(in.)	h _a	Cac	h _a	Cac	Uncracked	Cracked	Uncracked	Cracked	
	2%	4½ 5¾	3 ³ / ₄ 3 ⁵ / ₈			710	_	405 480	_	
	3	47/8 71/4	5 4½	47/8	31/4	900	690	380 530	465	
3/8	41/2	6% 10%	8½ 6¾	63/8	31/4	1,350	1,035	355 530	700	
	6	71/8 141/2	11½ 9	77/8	43/8	1,795	1,380	340 530	935	
	7½	9% 18	141/4 111/4	9%	5%	2,245	1,725	335 530	1,165	
	23/4	51/4 65/8	51% 51%	_	_	1,640	_	880 880	_	
	4	6½ 95/8	77/8 6	61/2	51/8	2,385	1,055	840 1160	565	
1/2	6	8½ 14½	12% 9	81/2	51/8	3,575	1,580	780 1,160	850	
	8	10½ 19¼	17½ 12	10½	51/4	4,770	2,105	755 1,160	1,135	
	10	12½ 24	22¼ 15	12½	63/8	5,960	2,635	740 1,160	1,420	
	31/8	61/4 71/2	61/4 61/4	_	_	2,150	_	1,085 1.085	_	
5/	5	81⁄8 12	9½ 7½	81/8	61/4	3,440	1,400	1,125 1,555	705	
5/8	71/2	10% 18	15% 11¼	10%	61/4	5,155	2,100	1,045 1,555	1,060	
	12½	15% 30	26% 18%	15%	75/8	8,590	3,500	995 1,555	1,765	
	31/2	71/ ₄ 81/ ₂	7 1/8 7 1/8	_	_	2,630	_	1,270 1,270	_	
3/4	6	9¾ 14½	11 9	9¾	71/8	4,510	1,800	1,400 1,940	870	
74	9	12¾ 21%	17¾ 13½	12¾	71/8	6,770	2,700	1,305 1,940	1,310	
	15	18¾ 36	31 1/8 22 1/2	18¾	9	11,275	4,505	1,235 1,940	2,180	
	3¾	81/8 9	77/8 77/8	_	_	3,010	_	1,415 1,415	_	
7/8	7	11% 16%	12% 10½	11%	77/8	5,620	2,245	1,675 2,320	1,055	
'/8	10½	14% 25¼	197/s 153/4	14%	77/8	8,430	3,370	1,565 2,320	1,580	
	17½	21 7/8 42	35 261/4	21%	10	14,050	5,620	1,480 2,320	2,635	
	4	9 9%	8½ 8½	_	_	3,275	_	1,505 1,505	_	
1	8	13 19¼	13½ 12	13	8½	6,545	2,855	1,895 2,615	1,310	
1	12	17 28%	21 ³ / ₄ 18	17	81/2	9,815	4,280	1,760 2,615	1,970	
	20	25 48	38¼ 30	25	121/4	16,360	7,135	1,670 2,615	3,280	
	5	11¼ 12	9½ 9½		_	4,025	_	_	_	
1 1/4	10	16¼ 24	15% 15	161⁄4	9½	8,050	4,460	_	_	
1 74	15	21 ¼ 36	24¾ 22½	21 1/4	111/8	12,070	6,685	_	_	
	25	31 ¼ 60	43% 37½	311/4	15%	20,120	11,145	_	_	

Threaded Rod		Allowable Tension Load of Threaded Rod Steel (lb.)										
Dia. (in.)	ASTM F1554 GR 36	ASTM F1554 GR 55	ASTM F1554 GR 105	ASTM A193 B6	ASTM A193 B7	ASTM A193 B8/B8M						
3/8	2,020	2,615	4,360	3,835	4,360	1,985						
1/2	3,705	4,795	7,990	7,030	7,990	3,640						
5/8	5,900	7,630	12,715	11,185	12,715	5,795						
3/4	8,720	11,275	18,790	16,535	18,790	8,570						
7/8	12,055	15,595	25,990	22,870	25,990	11,850						
1	15,820	20,455	34,090	29,995	34,090	15,545						
1 1/4	25.290	32,705	54.505	47.965	54.505	24.855						

^{1.} Allowable tension load must be the lesser of the concrete, bond or threaded rod steel load.

^{2.} Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of $\alpha = \%.6 = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

^{3.} Tabulated values are for a single anchor with no influence of another anchor.

^{4.} Interpolation between embedment depths is not permitted.

^{*} See page 12 for an explanation of the load table icons.

SET-XP $^{\odot}$ Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (f' $_{\rm c}$ = 2,500 psi) — Seismic Load

ſ	
١	IRC
1	IDU

(r _c – 2,000 pol)		Minimum Dimensions		Military Billion	Allowable Tension Load Based on Concrete or Bond (lb.)								
Nom. Insert	Embed. Depth,	Minimum Dimensions for Uncracked		Minimum Dimensions for Cracked		Edge	Edge Distances = c _{ac} on all sides				Distances :	= 1¾" on one three sides	e side
Diam.	h _{ef} (in.)	(i	n.)	(i	n.)	SDC			C-F ^{6,7}	SDC	A-B ⁵	SDC	C-F ^{6,7}
(in.)	(111.)	ha	Cac	ha	c _{ac}	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
	2%	4 ½ 5¾	3¾ 35/8	_	_	830	_	625	_	475 560	_	355 420	_
	3	47/8 71/4	5 4½	47/8	31/4	1,050	805	790	605	445 615	545	335 460	410
3/8	41/2	6% 10%	81/8 63/4	6%	31/4	1,575	1,210	1,180	905	415 615	815	310 460	615
	6	77/8 141/2	111/ ₈	77/8	43/8	2,095	1,610	1,575	1,210	400 615	1,090	300 460	815
	7 1/2	9% 18	141/ ₄ 111/ ₄	9%	5%	2,620	2,015	1,965	1,510	390 615	1,360	295 460	1,020
	23/4	5½ 6%	51/8 51/8	_	_	1,910	_	1,435	_	1,030	_	775 775	_
	4	6½ 95%	7% 6	61/2	51/8	2,785	1,230	2,085	920	080	660	735 1.015	495
1/2	6	8½ 14½	12% 9	81/2	51/8	4,170	1,845	3,130	1,385	910 1,355	995	685 1,015	745
	8	10½ 19¼	17½ 12 22¼	10½	51/4	5,565	2,455	4,170	1,845	1,355 910 1,355 880 1,355 865	1,325	660 1,015	995
	10	12½ 24	15	12½	6%	6,955	3,075	5,215	2,305	1.355	1,655	650 1.015	1,245
	31/8	61/4 71/2	61/4 61/4	_	_	2,505	_	1,880	_	1,265 1,265	_	950 950	_
5/8	5	81/8 12	9½ 7½	81/8	61/4	4,010	1,635	3,005	1,225	1,315 1,815	825	985 1.360	620
9/8	71/2	10% 18	15% 11¼	10%	61/4	6,015	2,450	4,510	1,840	1,220 1,815	1,235	915 1,360	930
	121/2	15% 30 71⁄4	267/8 183/4	15%	75/8	10,025	4,080	7,520	3,065	1,160 1,815 1,485	2,060	870 1,360	1,545
	3½	81/2	71/8 71/8	_	_	3,070	_	2,305	_	1.485	_	1,115 1,115	_
3/4	6	9¾ 14½	9	93⁄4	71/8	5,265	2,100	3,950	1,575	1,635 2,260	1,015	1,225 1,695	765
74	9	12¾ 21¾	17¾ 13½	12¾	71/8	7,895	3,150	5,920	2,365	1,525 2,260	1,525	1,140 1,695	1,145
	15	18¾ 36	31 1/8 22 1/2 7 7/8	18¾	9	13,155	5,255	9,870	3,940	1,440 2,260	2,540	1,080 1,695	1,905
	3¾	81/8 9	77/8 77/8 123/8	_	_	3,515	_	2,105	_	1,650 1,650 1,955	_	985 985 1,175	_
7/8	7	11% 16%	101/2	11%	77/8	6,555	2,620	3,935	1,575	2 (05	1,230	1,175 1,625 1,090	740
78	101/2	14% 25¼	197/8 153/4	14%	77/8	9,835	3,935	5,900	2,360	1,825 2,705	1,845	1,625	1,105
	17½	21 ⁷ / ₈ 42	35 261/4	21%	10	16,390	6,555	9,835	3,935	1,725 2,705	3,075	1,035 1.625	1,845
	4	9 95%	8½ 8½	_	_	3,820	_	2,635	_	1,755 1,755	_	1,210 1,210	_
1	8	13 191⁄4	13½ 12 21¾	13	81/2	7,635	3,330	5,270	2,295	2,210 3,050	1,530	1,525 2,105	1,055
	12	17 28%	18	17	81/2	11,450	4,995	7,905	3,445	2,055 3,050	2,295	1,420 2,105	1,585
	20	287/8 25 48	38¼ 30	25	121/4	19,085	8,325	13,170	5,745	1,950 3,050	3,825	1,345 2,105	2,640
	5	111/4	9½ 9½	_	_	4,695	_	3,520	_	_	_	_	_
1 1/4	10	161/4 24	15% 15	161/4	91/2	9,390	5,200	7,040	3,900	_	_	_	_
1 /4	15	21 ½ 36	24¾ 22½	211/4	111/8	14,085	7,800	10,565	5,850	_	_	_	_
		211/.	193/										

13,005

17,605

9,750

Threaded		Allowable Tension Load of Threaded Rod Steel (lb.)											
Rod Dia. (in.)	ASTM F1554 GR 36	ASTM F1554 GR 55	ASTM F1554 GR 105	ASTM A193 B6	ASTM A193 B7	ASTM A193 B8/B8M							
3/8	2,360	3,050	5,090	4,475	5,090	2,315							
1/2			9,320	8,200	9,320	4,250							
5/8			14,835	13,050	14,835	6,760							
3/4	10,170	13,155	21,920	19,290	21,920	9,995							
7/8	14,065	18,195	30,320	26,680	30,320	13,825							
1	1 18.455 23		39,770	34,995	39,770	18,135							
1 1/4	29.505	38.155	63.590	55.960	63,590	29.000							

311/4

15%

23,470

- 1. Allowable tension load must be the lesser of the concrete, bond or threaded rod steel load.
- 2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of $\alpha=1\!\!\!/\!_{\sim} 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.
- 3. Tabulated values are for a single anchor with no influence of another anchor.
- 4. Interpolation between embedment depths is not permitted.
- * See page 12 for an explanation of the load table icons.

- 5. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 6. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. Design strengths in **Bold** indicate that the anchor ductility requirements of D.3.3.4.3 (a)1 to 3 are satisfied when using ASTM F1554 Grade 36 threaded rod. Any other ductility requirements must be satisfied.
- 7. Allowable tension loads in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

SET-XP® Design Information — Concrete

		Minimum I	Dimensions	Minimum	Dimensions		Tens	sion Design S	Strength Ba				
Rebar	Nominal Embed.	Minimum Dimensions for Uncracked		for Cı	acked	Edge	Distances	= c _{ac} on all s	sides	Edge		= 1¾" on one three sides	side
Size	Depth	(i	n.)	(i	n.)	SDC			C-F ^{7,8}	SDC	A-B ⁶	SDC (C-F ^{7,8}
	(in.)	ha	Cac	ha	Cac	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
	23/8	4 ½ 5¾	4 35/8	_	_	1,380	_	1,035	_	765 895	_	575 670	_
	3	47/8 71/4	5% 4½	47/8	3½	1,740	700	1,305	525	720 995	455	540 745	340
#3	41/2	6% 10%	85/8 63/4	6%	3½	2,615	1,055	1,960	790	670 995	685	505 745	510
	6	7 % 14 ½	117/8 9	77/8	3½	3,485	1,405	2,615	1,055	650 995	910	485 745	685
	71/2	9% 18	151/8 111/4	9%	3½	4,355	1,755	3,265	1,315	635 995	1,140	475 745	855
	23/4	51/4 65/8	4½ 4½	_	_	2,065	_	1,550	_	1,180 1,180	_	885 885	_
	4	6½ 9%	7 6	6½	41/2	3,005	2,525	2,255	1,895	1,090 1,505	1,440	815 1,130	1,080
#4	6	8½ 14½	11%	81/2	5½	4,510	3,790	3,380	2,840	1,015 1,505	2,035	760 1,130	1,525
	8	10½ 19¼	15% 12	10½	65/8	6,015	5,050	4,510	3,790	980 1,505	2,525	735 1,130	1,895
	10	12½ 24 6¼	197/8 15 51/2	12½	7%	7,515	6,315	5,635	4,735	960 1,505 1,500	2,995	720 1,130 1,125	2,245
	31/8	7½ 81/8	5½ 5½ 8¾	_	_	2,860		2,145	_	1,500 1,500 1,520	_	1,125 1,125 1,140	_
#5	5	12 10%	7½ 14	81/8	5½	4,575	3,560	3,430	2,670	2,105 1,415	1,865	1,575 1,060	1,400
	71/2	18 15%	11½ 24%	10%	67/8	6,860	5,340	5,145	4,005	2,105 1,340	2,640	1,575 1,005	1,980
	12½	30 71/4	18¾ 6½	15%	9%	11,435	8,895	8,575	6,670	2,105 1,845	4,005	1,575 1,385	3,005
	3½	8½ 9¾	6½ 10%	_	_	3,725	_	2,795	_	1,845 2,000	_	1.385	_
#6	6	14½ 12¾	9	9¾	6½	6,385	4,555	4,790	3,415	2,765 1,860	2,260	1,500 2,075 1,395	1,695
	9	215/8 183/4	13½ 29%	12¾	81/8	9,575	6,835	7,180	5,125	2,765	3,235	2,075 1,325	2,425
	15	36 81/8	22½ 7½	18¾	11%	15,960	11,390	11,970	8,545	1,765 2,765 2,145	4,965	2,075 1,610	3,725
	3¾	9	71/2	_		4,505		3,380		2.145	_	1,610	_
#7	7	11% 16%	117/8 101/2	11%	71/2	8,415	5,430	6,310	4,070	2,525 3,485	2,585	1,890 2,615	1,940
	101/2	147/8 251/4	191/8 153/4	147/8	91/8	12,620	8,145	9,465	6,110	2,350 3,485 2,225	3,740	1,760 2,615	2,805
	17½	21% 42 9	33½ 26¼ 8¾	21%	12¾	21,035	13,575	15,775	10,180	3,485 2,455	5,770	1,670 2,615 1,845	4,330
	4	9% 13	8% 13%	_	_	5,330	_	3,995	_	2,455 2,455 3,085	_	1,845 2,315	
#8	8	19¼ 17	12 21½	13	8%	10,660	6,095	7,995	4,570	4,265 2,870	2,810	3.200	2,110
	12	28% 25	18 37%	17	9¾	15,985	9,145	11,990	6,860	4,265 2,720	4,070	2,155 3,200 2,040	3,055
	20	48	30 101/8	25	13¾	26,645	15,240	19,985	11,430	4,265	6,380	3,200	4,785
	5	12 161/4	10 1/8 10 1/8 16 1/4	_	_	7,765	_	5,825	_	_	_	_	_
#10	10	24	15 261/8	161/4	101/8	15,530	5,940	11,645	4,455	_	_	_	_
	15	36 311/4	22½ 46	211/4	101/8	23,295	8,910	17,470	6,680	_	_	_	_
	25	60	371/2	31 1/4	13½	38,825	14,850	29,115	11,135	_	_	_	_

Rebar	Tension Design Strength of Rebar Steel (lb.)						
Size	ASTM A615 GR 60	ASTM A706 GR 60	3				
#3	6,435	5,720	5				
#4	11,700	10,400	6				
#5	18,135	16,120					
#6	25,740	22,880	7				
#7	35,100	31,200	7				
#8	46,215	41,080	8				
#10	74,100	66,040	1				

- 1. Tension design strength must be the lesser of the concrete, bond or rebar steel design strength.
- Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F.
- 3. Tabulated values are for a single anchor with no influence of another anchor.
- 4. Interpolation between embedment depths is not permitted.
- 5. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.
- 6. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 7. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 8. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

^{*} See page 12 for an explanation of the load table icons.

SET-XP $^{\odot}$ Allowable Tension Loads for Rebar in Normal-Weight Concrete (f' $_{\rm C}$ = 2,500 psi) — Static Load

	ı
IBC	l
	IBC

(r _C – 2,000	psij — Stat					Allowable Te	ension Load Ba	sed on Concrete	or Bond (lb.)	
Rebar Size	Nominal Embed. Depth	Minimum Di Uncracl	mensions for ked (in.)		Minimum Dimensions for Cracked (in.)		Edge Distances = c _{ac} on all sides		Edge Distances = $1\frac{3}{4}$ " on one side and c_{ac} on three sides	
	(in.)	ha	Cac	ha	Cac	Uncracked	Cracked	Uncracked	Cracked	
	2%	41/4 53/4	4 35/8		_	985	_	545 640	_	
	3	47/8 71/4	5% 4½	47/8	31/2	1,245	500	515 710	325	
#3	41/2	6% 10%	85/8 63/4	6%	31/2	1,870	755	480 710	490	
	6	7% 14½	11% 9	77/8	31/2	2,490	1,005	465 710	650	
	71/2	9% 18	151/8 111/4	9%	3½	3,110	1,255	455 710	815	
	2¾	51/4 65/8	4½ 4½	_	_	1,475	_	845 845	_	
	4	6½ 9%	7 6	6½	41/2	2,145	1,805	780 1,075	1,030	
#4	6	8½ 14½	11% 9	8½	5½	3,220	2,705	725 1,075	1,455	
	8	10½ 19¼	15% 12	10½	65/8	4,295	3,605	700 1,075	1,805	
	10	12½ 24	19% 15	12½	75/8	5,370	4,510	685 1,075	2,140	
	31/8	61/4 71/2	5½ 5½	_	_	2,045	_	1,070 1,070	_	
#5	5	81/8 12	83/ ₄ 71/ ₂	81/8	5½	3,270	2,545	1,085 1,505	1,330	
,,,	71/2	10% 18	14 11¼	10%	67/8	4,900	3,815	1,010 1,505	1,885	
	12½	15% 30	245/8 183/4	15%	95/8	8,170	6,355	955 1,505	2,860	
	31/2	71/4 81/2	6½ 6½	_	_	2,660	_	1,320 1,320	_	
#6	6	9¾ 14½	10%	9¾	6½	4,560	3,255	1,430 1,975	1,615	
"0	9	12¾ 21%	16% 13½	12¾	81/8	6,840	4,880	1,330 1,975	2,310	
	15	18¾ 36	291/8 221/2	18¾	11%	11,400	8,135	1,260 1,975	3,545	
	3¾	81/8 9	7½ 7½	_	_	3,220	_	1,530 1,530	_	
#7	7	11% 16%	117/8 101/2	11%	71/2	6,010	3,880	1,805 2,490	1,845	
	10½	14% 25¼	191/8 153/4	147/8	91/8	9,015	5,820	1,680 2,490	2,670	
	17½	21% 42	33½ 26¼	217/8	12¾	15,025	9,695	1,590 2,490	4,120	
	4	9 95%	8% 8%	_	_	3,805	_	1,755 1,755	_	
#8	8	13 19¼	13% 12	13	8%	7,615	4,355	2,205 3,045	2,005	
0	12	17 28%	21½ 18	17	93/4	11,420	6,530	2,050 3,045	2,905	
	20	25 48	37% 30	25	13¾	19,030	10,885	1,945 3,045	4,555	
	5	111/4	101/8 101/8	_	_	5,545	_	_	_	
#10	10	16¼ 24	16¼ 15	161/4	101/8	11,095	4,245	_		
	15	21¼ 36	261/8 221/2	211/4	101/8	16,640	6,365	_		
	25	31 ¼ 60	46 37½	311/4	13½	27,730	10,605	_	_	

Rebar Size	Allowable Tension Load of Rebar Steel (lb.)					
Nepai Size	ASTM A615 GR 60	ASTM A706 GR 60				
#3	4,595	4,085				
#4	8,355	7,430				
#5	12,955	11,515				
#6	18,385	16,345				
#7	25,070	22,285				
#8	33,010	29,345				
#10	52,930	47,170				

^{1.} Allowable tension load must be the lesser of the concrete, bond or rebar steel load.

^{2.} Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

^{3.} Tabulated values are for a single anchor with no influence of another anchor.

^{4.} Interpolation between embedment depths is not permitted.

^{*} See page 12 for an explanation of the load table icons.

SIMPSON Strong-Tie

SET-XP $^{\odot}$ Allowable Tension Loads for Rebar in Normal-Weight Concrete (f' $_{\rm C}$ = 2,500 psi) — Wind Load

$\overline{}$	_	
IDO		,0,51
IRC	T-	
	425.61.83	

	Nominal	Minimum Di	mensions for	Minimum Dimensions for				ased on Concrete or Bond (lb.)		
lebar Size	Embed. Depth (in.)	Uncracl			Cracked (in.)		ces = c _{ac} on ides	Edge Distances = $1\frac{3}{4}$ " on side and c_{ac} on three side		
		h _a	Cac	h _a	Cac	Uncracked	Cracked	Uncracked	Cracked	
	2%	41/ ₄ 53/ ₄	4 35/8	_	_	830	_	460 535	_	
	3	47/8 71/4	5% 4½	47/8	31/2	1,045	420	430 595	275	
#3	41/2	6% 10%	85/8 63/4	6%	31/2	1,570	635	400 595	410	
	6	7% 14½	11% 9	71/8	3½	2,090	845	390 595	545	
	7½	9% 18	151/8 111/4	9%	31/2	2,615	1,055	380 595	685	
	23/4	51/4 65/8	4½ 4½	_	_	1,240	_	710 710	_	
	4	6½ 9%	7	6½	41/2	1,805	1,515	655 905	865	
# 4	6	8½ 14½	11% 9	8½	5½	2,705	2,275	610 905	1,220	
	8	10½ 19¼	15% 12	10½	65/8	3,610	3,030	590 905	1,515	
	10	12½ 24	19% 15	12½	75/8	4,510	3,790	575 905	1,795	
	31/8	61/4 71/2	5½ 5½		_	1,715	_	900	_	
‡ 5	5	81/8 12	83/ ₄ 71/ ₂	81/8	51/2	2,745	2,135	910 1,265	1,120	
+3	71/2	10% 18	14 111⁄4	10%	67/8	4,115	3,205	850 1,265	1,585	
	12½	15% 30	24% 18¾	15%	95/8	6,860	5,335	805 1,265	2,405	
	31/2	71/ ₄ 81/ ₂	6½ 6½	_	_	2,235	_	1,105 1,105	_	
#6	6	9¾ 14½	10%	93/4	61/2	3,830	2,735	1,200 1,660	1,355	
τυ	9	12¾ 21%	16% 13½	12¾	81/8	5,745	4,100	1,115 1,660	1,940	
	15	18¾ 36	291/s 221/2	18¾	11%	9,575	6,835	1,060 1,660	2,980	
	3¾	81/8 9	7½ 7½		_	2,705	_	1,285 1,285	_	
# 7	7	11% 16%	117/8 101/2	11%	7½	5,050	3,260	1,515 2,090	1,550	
T I	10½	14% 25¼	191/8 153/4	147/8	91/8	7,570	4,885	1,410 2,090	2,245	
	17½	21	33½ 26¼	21%	12¾	12,620	8,145	1,335 2,090	3,460	
	4	9 9%	8% 8%	_	_	3,200	_	1,475 1,475	_	
# 8	8	13 19¼	13% 12	13	8%	6,395	3,655	1,850 2,560	1,685	
, 0	12	17 28%	21½ 18	17	9¾	9,590	5,485	1,720 2,560	2,440	
	20	25 48	37% 30	25	13¾	15,985	9,145	1,630 2,560	3,830	
	5	111⁄4 12	101/8 101/8	_	_	4,660	_	_	_	
10	10	16¼ 24	16¼ 15	161⁄4	101/8	9,320	3,565	_	_	
10	15	21 ¼ 36	261/8 221/2	211/4	101/8	13,975	5,345	_	_	
	25	31 ½ 60	46 37½	311/4	13½	23,295	8,910	_	_	

Rebar	Allowable Tension Load of Rebar Steel (lb.)						
Size	ASTM A615 GR 60	ASTM A706 GR 60					
#3	3,860	3,430					
#4	7,020	6,240					
#5	10,880	9,670					
#6	15,445	13,730					
#7	21,060	18,720					
#8	27,730	24,650					
#10	44,460	39,625					

- 1. Allowable tension load must be the lesser of the concrete, bond or rebar steel load.
- 2. Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using α conversion factor of α = 167. The conversion factor α is based on the load combination assuming 100% wind load.
- 3. Tabulated values are for a single anchor with no influence of another anchor.
- 4. Interpolation between embedment depths is not permitted.

^{*} See page 12 for an explanation of the load table icons.

SET-XP $^{\odot}$ Allowable Tension Loads for Rebar in Normal-Weight Concrete (f'_c = 2,500 psi) — Seismic Load

$(I_C = Z)$	2,500 psi)	1		1	mum		ΔΙ	lowable Tensi	ion Load Bas	sed on Concre	te or Bond (
Rebar	Nominal Embed.	Minimum Dimensions for Uncracked (in.)		Dimens	mum sions for	Allowable Tension Load Based on Concrete or Bond (lb.) Edge Distances = 1¾" on one side							
Size	Depth			Cracked (in.)		SDC A-B ⁵ SDC C-F ^{6,7}			SDC	and c _{ac} on A-R ⁵	three sides SDC (C-F 6,7	
	(in.)	ha	Cac	ha	Cac	Uncracked	Cracked	Uncracked		Uncracked	Cracked	Uncracked	Cracked
	2%	4 1/4 5 3/4	4 35/8	_	_	965	_	725	_	535 625	_	405 470	_
	3	47/8 71/4	53/8 41/2	47/8	31/2	1,220	490	915	370	505 695	320	380 520	240
#3	41/2	63/8 107/8	85/8 63/4	6%	3½	1,830	740	1,370	555	470 695	480	355 520	355
	6	77/8	117/8	77/8	3½	2,440	985	1,830	740	455 695	635	340 520	480
	71/2	93/8 18	151/8 111/4	9%	3½	3,050	1,230	2,285	920	445 695	800	335 520	600
	23/4	5½ 65%	41/2	_	_	1,445	_	1,085	_	825 825	_	620 620	_
	4	61/2	7 6	6½	41/2	2,105	1,770	1,580	1,325	765 1,055	1,010	570 790 530	755
#4	6	95/8 81/2 141/2	11%	81/2	5½	3,155	2,655	2,365	1,990	710	1,425	530	1,070
	8	10½ 10¼ 19¼	15% 12	10½	65/8	4,210	3,535	3,155	2,655	1,055 685 1,055	1,770	790 515 790	1,325
	10	12½	197/8 15	12½	75/8	5,260	4,420	3,945	3,315	670 1,055	2,095	505 790	1,570
	31/8	6½ 7½	5½ 5½	_	_	2,000	_	1,500	_	1,050 1,050	_	790 790	_
	5	81/8 12	8 ³ / ₄ 7 ¹ / ₂	81/8	5½	3,205	2,490	2,400	1,870	1,065 1,475	1,305	800 1,105	980
#5	7½	10% 18	14	10%	67/8	4,800	3,740	3,600	2,805	990 1,475	1,850	740 1,105	1,385
	12½	15% 30	245/8 183/4	15%	95/8	8,005	6,225	6,005	4,670	940	2,805	705 1,105	2,105
	3½	7½ 8½	61/2	_	_	2,610	_	1,955	_	1,290 1,290	_	970 970	_
	6	93/4	10%	9¾	61/2	4,470	3,190	3,355	2,390	1.400	1,580	1.050	1,185
#6	9	12¾ 21⅓	16% 13½	12¾	81/8	6,705	4,785	5,025	3,590	1,935 1,300 1,935	2,265	1,455 975 1,455	1,700
	15	18¾ 36	291/8 221/2	18¾	11%	11,170	7,975	8,380	5,980	1,235 1.935	3,475	930	2,610
	3¾	81/8 9	7½ 7½	_	_	3,155	_	2,365	_	1,500 1,500	_	1,125 1,125 1,325	_
#7	7	11% 16%	11% 10½	11%	7½	5,890	3,800	4,415	2,850	1,770 2,440	1,810	1,325 1,830	1,360
#1	10½	147/8 251/4	191/8 153/4	14%	91/8	8,835	5,700	6,625	4,275	1,645 2,440	2,620	1,230 1,830	1,965
	171/2	21 7/8 42	33½ 26¼	21%	12¾	14,725	9,505	11,045	7,125	1,560 2,440	4,040	1,170 1,830	3,030
	4	9 95%	8% 8%	_	_	3,730	_	2,795	_	1,720 1,720	_	1,290 1,290	_
#8	8	13 191⁄4	13% 12	13	8%	7,460	4,265	5,595	3,200	2,160 2,985 2,010	1,965	1,620 2,240 1,510	1,475
#0	12	17 28%	21½ 18	17	9¾	11,190	6,400	8,395	4,800	2,985	2,850	2.240	2,140
	20	25 48	37% 30	25	13¾	18,650	10,670	13,990	8,000	1,905 2,985	4,465	1,430 2,240	3,350
	5	11 1/4 12	101/8 101/8	_	_	5,435		4,080		_		_	
#10	10	161/ ₄ 24	16¼ 15	161⁄4	101/8	10,870	4,160	8,150	3,120	_	_	_	_
πΙΟ	15	21 1/4 36	261/8 221/2 46	211/4	101/8	16,305	6,235	12,230	4,675	_	_	_	_
	25	31 ½ 60	46 37½	311/4	13½	27,180	10,395	20,380	7,795	_	_	_	_

Rebar Size	Allowable Tension Load of Rebar Steel (lb.)						
	ASTM A615 GR 60	ASTM A706 GR 60					
#3	4,505	4,005					
#4	8,190	7,280					
#5	12,695	11,285					
#6	18,020	16,015					
#7	24,570	21,840					
#8	32,350	28,755					
#10	51,870	46,230					

- $3.\,\mbox{Tabulated}$ values are for a single anchor with no influence of another anchor.
- 4. Interpolation between embedment depths is not permitted.
- 5. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 6. When designing anchorages in SDC C-F, the Designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- Allowable tension loads in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

^{1.} Allowable tension load must be the lesser of the concrete, bond or rebar steel load.

^{2.} Allowable tension loads are calculated based on the strength design provisions of ACI 318-11 Appendix D assuming dry concrete, periodic inspection, short-term temperature of 150°F and long-term temperature of 110°F. Tension design strengths are converted to allowable tension loads using α conversion factor of α = %.7 = 1.43. The conversion factor α is based on the load combination assuming 100% seismic load.

^{*} See page 12 for an explanation of the load table icons.

SET-XP® Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction 1, 3, 4, 5, 6, 8, 9, 10, 11

IBC		→			7
-----	--	----------	--	--	---

Diameter (in.) or	Drill Bit Diameter (in.)	Minimum Embedment ² (in.)	Allowable Load Based on Bond Strength ⁷ (lb.)							
Rebar Size Ńo.	Dilli bit Diameter (iii.)	Willimum Embedinent (iii.)	Tension Load	Shear Load						
	Threaded Rod Installed in the Face of CMU Wall									
3/8	1/2	3%	1,490	1,145						
1/2	5/8	41/2	1,825	1,350						
5/8	3/4	5%	1,895	1,350						
3/4	7/8	61/2	1,895	1,350						
	Reba	r Installed in the Face of CMU	Wall							
#3	1/2	3%	1,395	1,460						
#4	5/8	41/2	1,835	1,505						
#5	3/4	5%	2,185	1,505						

- 1. Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on page 61.
- 2. Embedment depth shall be measured from the outside face of masonry wall.
- Critical and minimum edge distance and spacing shall comply with the information on page 55. Figure 2 on page 55 illustrates critical and minimum edge and end distances.
- Minimum allowable nominal width of CMU wall shall be 8 inches.
 No more than one anchor shall be permitted per masonry cell.
- 5. Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint), except anchors shall not be installed within 1½ inches of the head joint, as show in Figure 2 on page 55.
- Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below, as applicable.
- 9. Threaded rod and rebar installed in fully grouted masonry walls are permitted to resist dead, live, seismic and wind loads.
- 10. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

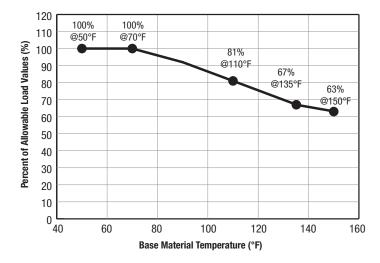
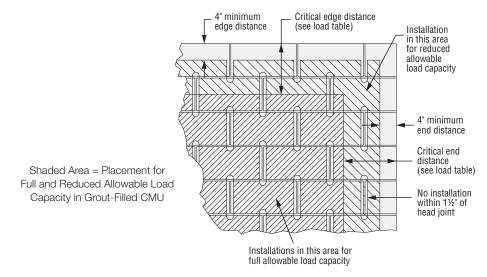


Figure 1. Load capacity based on in-service temperature for SET-XP® epoxy adhesive in the face of fully grouted CMU wall construction

^{*} See page 12 for an explanation of the load table icons.



SET-XP® Edge Distance and Spacing Requirements and Allowable Load Reduction Factors – Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction7

		CARR O	
IBC	/ \		

			Ed	ge or Edge Dis	tance ^{1,8}				Spacing ^{2,9}			
		Critical (F Capa	ull Anchor city) ³	Minimum (Reduced Anchor Capacity) ⁴			Critical (F Capa	ull Anchor city)⁵	Minimum (Reduced Anchor Capacity) ⁶			
Rod Dia. (in.) or Rebar Size No.	Minimum Embed. Depth (in.)	Critical Edge or End Distance, C _{cr} (in.)	Allowable Load Reduction Factor	Minimum Edge or End Distance, C _{min} (in.)	Allowable Load Reduction Factor				Allowable Load Reduction Factor	Minimum Spacing, S _{min} (in.)		ole Load on Factor
110.	()	Load Di	irection	Load Direction		Load Direction		Load D	irection	Load Direction		
		Tension or	Tension or	Tension or	Tanaian	She	ar ¹⁰	Tension or	Tension or	Tension or	Tanaian	Chass
		Shear	Shear	Shear	Tension	Perp.	Para.	a. Shear	Shear	Shear	Tension	Shear
3/8	3%	12	1.00	4	0.91	0.72	0.94	8	1.00	4	1.00	1.00
1/2	41/2	12	1.00	4	1.00	0.58	0.87	8	1.00	4	0.82	1.00
5/8	5%	12	1.00	4	1.00	0.48	0.87	8	1.00	4	0.82	1.00
3/4	61/2	12	1.00	4	1.00	0.44	0.85	8	1.00	4	0.82	1.00
#3	3%	12	1.00	4	0.96	0.62	0.84	8	1.00	4	0.87	0.91
#4	41/2	12	1.00	4	0.88	0.54	0.82	8	1.00	4	0.87	0.91
#5	5%	12	1.00	4	0.88	0.43	0.82	8	1.00	4	0.87	1.00

- Edge distance (C_{Cr} or C_{min}) is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing (S_{cr} or S_{min}) is the distance measured from centerline to centerline of two anchors.
- 3. Critical edge distance, C_{cr} , is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 4. Minimum edge distance, C_{min}, is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C_{cn} by the load reduction factors shown above.
- Critical spacing, S_{cn} is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.
- 6. Minimum spacing, S_{min} , is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S_{cr} , by the load reduction factors shown above.
- Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 5 on page 57). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

Figure 2. Allowable anchor locations for full and reduced load capacity when installation is in the face of fully grouted CMU masonry wall construction

^{*} See page 12 for an explanation of the load table icons.

SET-XP® Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Top of Fully Grouted CMU Wall Construction^{1, 2, 4, 5, 6, 7, 9, 10, 11, 12}

IDO	1		்யீ	*
IBC	20 20	530 530		

Diameter (in.) or	Drill Bit Diameter	Minimum Embedment ³	Allowable	e Load Based on Bond Streng	gth ^{7, 8} (lb.)				
Rebar Size Ńo.	(in.)	(in.)	Tension Load	Shear Perp.	1,050 1,625 1,435 1,785 1,370 1,375				
Threaded Rod Installed in the Top of CMU Wall									
1/2	5/8	41/2	1,485	590	1,050				
72	78	12	2,440	665	1,625				
5/8	3/4	5%	1,700	565	1,435				
78	74	15	2,960	660	1,785				
3/4	7/8	61/2	1,610	735	1,370				
74	78	21	4,760	670	1,375				
		Rebar Instal	led in the Top of CMU Wall						
#4	5/8	41/2	1,265	550	865				
#4	78	12	2,715	465	1,280				
#5	3/4	5%	1,345	590	1,140				
#D	74	15	3,090	590	1,285				

- 1. Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on page 61.
- 2. Allowable loads are for installation in the grouted CMU core opening.
- 3. Embedment depth shall be measured from the horizontal surface of the grouted CMU core opening on top of the masonry wall.
- 4. Critical and minimum edge distance, end distance and spacing shall comply with the information on pages 57 and 58. Figures 3A and 3B on page 57 illustrate critical and minimum edge and end distances.
- 5. Minimum allowable nominal width of CMU wall shall be 8 inches (203 mm).
- 6. Anchors are permitted to be installed in the CMU core opening shown in Figures 3A and 3B on page 57. Anchors are limited to one installation per CMU core opening.
- 7. Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 8. Tabulated allowable loads are based on a safety factor of 5.0 .
- 9. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 on page 54, as applicable.
- 10. Threaded rod and rebar installed in fully grouted masonry walls with SET-XP® adhesive are permitted to resist dead, live, seismic and wind loads.
- 11. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 12. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

SET-XP® Edge and End Distance Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Top of Fully Grouted CMU Wall Construction^{1,4,5}

	□ E3	(See)	ď
IBC			l

		Critical (Full Anchor Capacity) ²		Minimum End (Reduced Anchor Capacity) ³				(F	Minimum Edge Reduced Anchor Capacity) ⁶				
Rod Dia. (in.) or Rebar Size No.	Minimum Embed. Depth (in.)	Critical Edge, <i>C_{cr}</i> (in.)	Critical End Distance, <i>C_{cr}</i> (in.)	Allowable Load Reduction Factor	Minimum End Distance, <i>C_{min}</i> (in.)	End Min. End Allowable Load Distance, Reduction Factor C _{min} (in.)		End Min. End Allowable Load Distance, Reduction Factor		Minimum Edge, <i>C_{min}</i> (in.)	Edge, Allowable Load		
			Load Direction	1		Load Direction				Load D			
		Tension or	Tension or	Tension or	Tension or	Tension	Sh	ear ⁶	Tension or	Tension		1	
		Shear Shear Shear	Shear	101131011	Perp.	Parallel	Shear	101101011	Perp.	Parallel			
1/2	41/2	2¾	20	1.00	313/16	0.88	0.84	0.66	13/4	0.83	0.63	0.77	
/2	12	2¾	20	1.00	313/16	0.64	0.91	0.34	13/4	0.95	0.55	0.69	
5/8	5%	2¾	20	1.00	41/4	0.90	1.00	0.50	13/4	0.82	0.57	0.71	
78	15	23/4	20	1.00	41/4	0.38	0.85	0.29	13/4	0.91	0.72	0.73	
7/8	77/8	23/4	20	1.00	41/4	0.98	0.72	0.57	_	_	_	_	
'/8	21	23/4	20	1.00	41/4	0.63	0.96	0.64	_	_	_	_	
#4	41/2	23/4	20	1.00	41/4	0.96	0.90	0.76	_	_	_	_	
#4	12	23/4	20	1.00	41/4	0.58	1.00	0.46	_	_	_	_	
#5	5%	23/4	20	1.00	41/4	1.00	0.86	0.60	_	_	_	_	
#3	15	23/4	20	1.00	41/4	0.41	0.76	0.49	_		_	_	

- 1. Edge and end distances (C_{Cr} or C_{min}) are the distances measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figures 3A and 3B below for illustrations showing critical and minimum edge and end distances.
- Critical edge and end distances, C_{Cr,} are the least edge distances at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 3. Minimum edge and end distances, C_{min} , are the least edge distances where an anchor has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C_{Cr} , by the load reduction factors shown above.
- Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 5. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 6. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 5 below). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

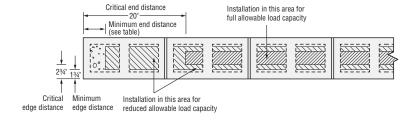


Figure 3A. Allowable anchor locations of ½"- and 5%"-diameter threaded rod for full and reduced load capacity when installation is in the top of fully grouted CMU masonry wall construction

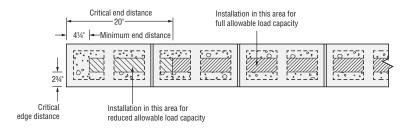
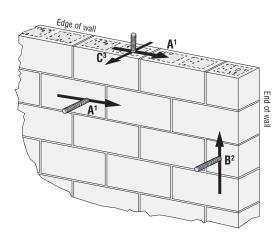



Figure 3B. Allowable anchor locations of %"-diameter threaded rod and #4 and #5 rebar for full and reduced load capacity when installation is in the top of fully grouted CMU masonry wall construction

- 1. Direction of shear load A is parallel to edge of wall and perpendicular to end of wall.
- 2. Direction of shear load B is parallel to end of wall and perpendicular to edge of wall.
- 3. Direction of shear load C is perpendicular to edge of wall.

Figure 5. Direction of shear load in relation to edge and end of wall

^{*} See page 12 for an explanation of the load table icons.

SET-XP® Spacing Distance Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Top of Fully Grouted CMU Wall Construction^{1,4,5}

1	$\overline{}$	1
	IDC	
	IDU	

		Critical ((Full Ancho	Spacing r Capacity)²	Minimum S	pacing (Reduced Ancho	r Capacity)³
Rod Dia. (in.) or Rebar Size No.	Minimum Embed. Depth	Critical Spacing, S_{cr} (in.)	Allowable Load Reduction Factor	Minimum Spacing, S_{cr} (in.)	Allowable Load	Reduction Factor
	(in.)	Load Di	rection		Load Direction	
		Tension or Shear	Tension or Shear	Tension or Shear	Tension	Shear
1/2	41/2	18	1.00	8	0.80	0.92
72	12	48	1.00	8	0.63	0.98
5/8	5%	22.5	1.00	8	0.86	1.00
78	15	60	1.00	8	0.56	1.00
7/8	77/8	31.5	1.00	8	0.84	0.82
1/8	21	84	1.00	8	0.51	0.98
#4	41/2	18	1.00	8	0.97	0.93
#4	12	48	1.00	8	0.75	1.00
#5	5%	22.5	1.00	8	1.00	1.00
#5	15	60	1.00	8	0.82	1.00

^{1.} Anchor spacing (S_{cr} or S_{min}) is the distance measured from centerline to centerline of two anchors.

^{2.} Critical spacing, S_{cr} , is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor perofrmance is not influenced by adiacent anchors.

^{3.} Minimum spacing, S_{min} , is the least spacing where an anchor has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S_{cr} , by the load reduction factors shown above.

^{4.} Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.

^{5.} Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.

SET-XP® Allowable Tension and Shear Loads – Threaded Rod in the Face of Hollow CMU Wall Construction 1,3,4,5,6,8,9,10,11

IBC		→		
-----	--	----------	--	--

Diameter (in.)	Drill Bit Diameter	Minimum Embed ²	Allowable Load Based	on Bond Strength ⁷ (lb.)
	(in.)	(in.)	Tension	Shear
3/8	9/16	11⁄4	245	415
1/2	3/4	11⁄4	245	505
5/8	7/8	11/4	290	530

- 1. Allowable load shall be the lesser of bond values shown in this table and steel values shown on page 61.
- 2. Embedment depth is considered the minimum wall thickness of 8" x 8" x 16" ASTM C90 concrete masonry blocks, and is measured from the outside to the inside face of the block wall. The minimum length Opti-Mesh plastic screen tube for use in hollow CMU is 3½".
- 3. Critical and minimum edge distance and spacing shall comply with the information provided on page 60. Figure 4 on page 60 illustrates critical and minimum edge and end distances.
- 4. Anchors are permitted to be installed in the face shell of hollow masonry wall construction as shown in Figure 4.
- 5. Anchors are limited to one or two anchors per masonry cell and must comply with the spacing and edge distance requirements provided.
- 6. Tabulated load values are for anchors installed in hollow masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- 8. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 on page 54, as applicable.
- 9. Threaded rods installed in hollow masonry walls with SET-XP® adhesive are permitted to resist dead, live load and wind load applications.
- 10. Threaded rods must meet or exceed the tensile strength of ASTM F1554, Grade 36, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads must be multiplied by 0.80.

SET-XP® Edge, End and Spacing Distance Requirements and Allowable Load Reduction Factors — Threaded Rod in the Face of Hollow CMU Wall Construction⁷

BC	○	

		Edg	e or End Distan	ce ^{1,8}				Spacing ^{2,9}		duced Anchor Capacity) ^s Allowable Load Reduction Factor			
	Critical (Full An	chor Capacity) ³	Minimum (F	Reduced Ancho	r Capacity)4	Critical (Full Anchor Capacity)⁵		Minimum (Reduced Anchor Capacity) ⁶					
Rod Diameter (in.)	Critical Edge or End Distance, <i>C_{cr}</i> (in.)	Allowable Load Reduction Factor	Minimum Edge or End Distance, <i>C_{min}</i> (in.)	d Allowable Load Spacing C Load Spacing C	Minimum Spacing, S _{min} (in.)								
	Load Di	irection		Load Direction	oad Direction		Load Direction		Load Direction				
	Tension or Shear	Tension or Shear	Tension or Shear	Tension	Shear ¹⁰	Tension or Shear	Tension or Shear	Tension or Shear	Tension	Shear			
3/8	12	1.00	4	0.71	0.57	8	1.00	4	0.56	0.92			
1/2	12	1.00	4	0.73	0.51	8	1.00	4	0.61	0.85			
5/8	12	1.00	4	0.66	0.66 0.49		1.00	4	0.65	0.76			

- Edge and end distances (C_{cr} or C_{min}) are the distances measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 4 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing $(S_{Cr} \circ S_{min})$ is the distance measured from centerline to centerline of two anchors.
- 3. Critical edge and end distances, C_{cr} , are the least edge distances at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 4. Minimum edge and end distances, C_{min}, are the least edge distances where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C_{Cr}, by the load reduction factors shown above.
- Critical spacing, S_{Cr}, is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.
- 6. Minimum spacing, S_{min} , is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S_{Cr} , by the load reduction factors shown above.
- 7. Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 8. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act toward the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 5 on page 57). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

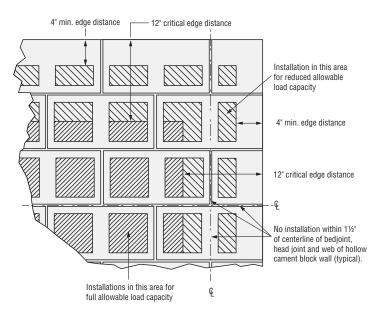


Figure 4. Allowable anchor locations for full and reduced load capacity when installation is in the face of hollow CMU masonry wall construction

^{*} See page 12 for an explanation of the load table icons

SET-XP® Allowable Tension and Shear Loads — Threaded Rod Based on Steel Strength¹

IBC		→	*
-----	--	----------	---

		Tension	Load Based o	n Steel Streng	jth² (lb.)	Shear I	Load Based on	Steel Strengt	h ³ (lb.)
Threaded Rod	Tensile Stress			Stainle	ss Steel			Stainle	ss Steel
Diameter (in.)		ASTM F1554 Grade 36 ⁴	ASTM A193 Grade B7 ⁶	ASTM A193 Grade B6 ⁵	ASTM A193 Grades B8 and B8M ⁷	ASTM F1554 Grade 36 ⁴	ASTM A193 Grade B7 ⁶	ASTM A193 Grade B6 ⁵	ASTM A193 Grades B8 and B8M ⁷
3/8	0.078	1,495	3,220	2,830	1,930	770	1,660	1,460	995
1/2	0.142	2,720	5,860	5,155	3,515	1,400	3,020	2,655	1,810
5/8	0.226	4,325	9,325	8,205	5,595	2,230	4,805	4,225	2,880
3/4	0.334	6,395	13,780	12,125	8,265	3,295	7,100	6,245	4,260
7/8	0.462	8,845	19,055	16,770	11,435	4,555	9,815	8,640	5,890

- 1. Allowable load shall be the lesser of bond values given on pages 54, 56 or 59 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on the following equation: $F_{V} = 0.33 \times F_{U} \times Tensile$ Stress Area.
- 3. Allowable Shear Steel Strength is based on the following equation: $F_V = 0.17 \times F_U \times Tensile$ Stress Area.
- 4. Minimum specified tensile strength (F_U = 58,000 psi) of ASTM F1554, Grade 36 used to calculate allowable steel strength.
- 5. Minimum specified tensile strength ($F_U = 110,000$ psi) of ASTM A193, Grade B6 used to calculate allowable steel strength.
- 6. Minimum specified tensile strength (F_U = 125,000 psi) of ASTM A193, Grade B7 used to calculate allowable steel strength.
- 7. Minimum specified tensile strength ($F_U = 75,000$ psi) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.

SET-XP® Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength¹

Rebar Size	Tensile Stress Area (in.²)	Tension Load (lb.) Based on Steel Strength		Shear Load (lb.) Based on Steel Strength	
		#3	0.11	2,200	2,640
#4	0.20	4,000	4,800	2,380	3,060
#5	0.31	6,200	7,400	3,690	4,745

- 1. Allowable load shall be the lesser of bond values given on pages 54, 56 or 59 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.
- 3. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (24,000 psi x tensile stress area) for Grade 60 rebar.
- 4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3 ($F_v = 0.17 \times F_u \times Tensile Stress Area.$)
- $5. F_u = 70,000$ psi for Grade 40 rebar.
- 6. F_u = 90,000 psi for Grade 60 rebar.

^{*} See page 12 for an explanation of the load table icons.